British Pathé News was a British institution that produced news reels and documentaries from 1910 to 1970. Their website is full of news clips of polar interest such as Shackleton’s death in 1922.

But here is something wonderful and obscure. Gambling with the Gulf Stream made in 1936!

Gambling with the Gulf Stream
© British Pathe screengrab from online preview.

In just 2 and a half minutes the voice-over explains what the Gulf Stream is, how much heat it carries (“every day it gives more heat than the world’s coal supply in 2 years“), and what would be the impact on some regional climates if its pathway was deliberately moved by geoengineering.

...continue reading

In the old days Antarctica wasn’t mapped and measured by satellites like it is now. In the past it was all about exploration. Scientists were dropped at bases by ship, and then left for at least a year - sometimes two. Very occasionally more.

When winter comes the sea ice freezes up and the area of sea ice is vast. But after the winter, spring brings long days of light, and that meant travel by dog sled was possible over the ice!

To make the sled journeys more efficient food caches were left along the coast the previous summer perhaps by the same ship that left them. Then the scientists could journey easily over the frozen sea ice to the food cache, and then work inland in their area of operations.

Which brings me to these pictures. This is a food cache left by a ship (I think) in 1962 for a science team setting out from Hope Bay.

A pile of wooden sledge boxes that contain all human needs: chocolate, biscuits, marmite, meat and soup. What more could you want?

...continue reading

The ice fish rediscovered by Doll
Mangé par le chat de l'équipage de la Terror

The cod icefish re-discovered and published in 1904 by Louis Dollo. The original caption says “Mangé par le chat de l'équipage de la Terror” or “Eaten by the Terror’s cat"!

The famous polar ships HMS Erebus and HMS terror had been in the ice long before Franklin took them to their doom in the Northwest Passage. James Clark Ross took them to the Antarctic from 1839-43 on a hugely successful voyage to find the South Magnetic Pole. Ross filled in many blanks on the map and discovered and named many places including Ross Island and Mount Erebus - one of the most spectacular volcanoes yet discovered.

Ross also took civilian experts to describe and write about their discoveries. These civilians produced vast scientific volumes to record their results.

...continue reading

6 Comments

-- UPDATED 11 June 2014 --

This post got the dreaded TL; DR on Reddit - but at least "they" acknowledged it was useful. Since it takes someone else to pick out the value in your work I offer this tweet from Jason Major.

@JPMajor tweet

- ORIGINAL POST

A significant area of Antarctic glaciological interest is the West Antarctic Ice Sheet (WAIS) and where it discharges into the Amundsen Sea Embayment.

Amundsen Sea Embayment
Amundsen Sea Embayment: Source Wikipedia

It is a research focus (e.g. iSTAR) because it is the region where the glacier ice is melting very rapidly.

A great research article by Dustin Schroeder (The University of Texas at Austin) has just been published in PNAS which presents evidence for the geothermal heat flux beneath the Thwaites Glacier.

Title page of Schroeder et al 2014

...continue reading

2 Comments

This plot shows the Antarctic sea ice extent, the Arctic sea ice extent, and the total sea ice extent plotted against time.

Arctic, Antarctic and total sea ice extent 2012

Like in previous post I chose 2012 only because it is the most recent complete year in this data set.

Take a look at the minimum, the maximum and the range of the sea ice extent.

Antarctic: Minimum Antarctic sea ice extent 3.11 x 106 km2
Maximum Antarctic sea ice extent 19.48 x 106 km2
Range of the Antarctic sea ice extent 16.37 x 106 km2
Arctic: Minimum Arctic sea ice extent 3.37 x 106 km2
Maximum Arctic sea ice extent 15.25 x 106 km2
Range of the Arctic sea ice extent 11.88 x 106 km2

The range of Antarctic sea ice extent is 16.37 x 106 km2, and the range of the Arctic sea ice extent is 11.88 x 106 km2.

The Antarctic and the Arctic do not "balance" in sea ice extent - the Antarctic variations are much larger.

Look at the shape of the annual cycle. I said previously that in the Antarctic the seasonal cycle of sea ice extent is not symmetrical. Sea ice grows slowly and steadily before decaying relatively rapidly: the melt period is shorter than the growth period.

In the Arctic the time sea ice grows is roughly similar to the time sea ice melts.

So they do not "balance". The seasonal cycles, ranges, minimums and maximums are  different,

The annual cycle of the Arctic and Antarctic sea ice extent is very different.

We know that the extent and thickness of the Arctic sea ice is decreasing. See for example what Tamino wrote in Feb 2014.

But what about the Antarctic? The extent of the sea ice has broken records for the satellite era. (This is a very funny article making some claims about what that means - if you want a clue what is the difference between glacial ice and frozen sea water?).

Some believe the observed reduction in the Arctic sea ice volume is balanced by the increase in the Antarctic sea ice extent. So we should look at the black line in the plot above.

I will get onto why I don't think that is a good idea in a coming post.

Here is the plot animated with 1 second = 10 days

 About the data

The data set is from the National Snow and Ice Data Center Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data.

 

11 Comments

This is the 2012 sea ice extent for both the Arctic and the Antarctic. The day of year and the calendar day are at the bottom.

I chose 2012 only because it is the most recent complete year in this data set.

My reason for making this video is because there have been a couple of huge news stories recently about the West Antarctic Ice Sheet:

On 12 May 2014 we heard that for all intents and purposes the West Antarctic Ice sheet is doomed (here is the primary research which is open access).

Then on 19 May 2014 we were told that Cryosat observations had shown that the loss of ice from Antarctica had increased quite a lot (here is the primary research).

For excellent commentary on these stories you can visit Carbon Brief, or Antarctic glaciers.org.

But whenever there is a big story about the decay of the West Antarctic Ice Sheet - which remember is land based glacial ice, some instantly point to this being not important because sea ice in Antarctica has been at record levels.

People who suggest that the observed decrease in glacial ice is somehow balanced by the observed increase in Antarctic sea ice extent are wrong. The sea ice is generally only a couple of metres thick and it is telling us quite a different climate story.

Over the next few posts I will try and explain why the decrease of Arctic sea ice is not balanced by an increase in Antarctic sea ice extent, and why there is no contradiction in glacial ice at the edge of the Antarctic continent decaying whilst simultaneously the sea ice is  at record extent.

 

[If anyone want the clip, also the Arctic and Antarctic as separate files in various large sizes and formats just send me an email at my work address - you will find a link on the "About me" page. And I will send you a dropbox link. I am a big fan of Creative Commons and Open Educational Resources. ]

-

The data is from the US Defense Meteorological Satellite Program (DMSP), and the data is freely accessible from the National Snow and Ice data Centre.

 

1 Comment

In 2012 I put together a storify using twitter and weblinks about the  Greenland Surface Melt. In that story a bunch of climate scientists and I talked about whether the extreme melt seen in  2012 was a signature of global warming.

Greenland melt on the BBC
The original BBC Greenland Melting story

An Open Access paper by Sirpa Häkkinen and others Greenland ice sheet melt from MODIS and associated atmospheric variability, published on 10 March 2014, explains how it happened.

Häkkinen et al., 2014 Greenland ice sheet melt from MODIS and associated atmospheric variability
Häkkinen et al., 2014 Greenland ice sheet melt from MODIS and associated atmospheric variability

It is a clear and well written paper that shows using MODIS (Moderate Resolution Imaging Spectroradiometer) data from satellites that you need two things for a serious surface melt event: atmospheric blocking (which allows warm air from the south to go over Greenland) + warm surface temperatures.

The event in 2012 had both of those conditions whereas 2013 did not. The difference is striking in their Figure 1.

Häkkinen et al., 2014 Fig 1
Figure 1 From Häkkinen et al., 2014. Extent of melt on the Greenland ice sheet for (a) 1 January to 31 December 2012 (days 1–366) and (b) 1 January to 30 August 2013 (days 1–243) as determined from MODIS-derived melt maps. A maximum of ~95% of the ice sheet surface (shaded red) experienced some melt in 2012 and only ~49% of the ice sheet surface experienced some melt in 2013. White represents no melting (according to MODIS), and green represent non-ice covered land areas. The location of Summit, mentioned in the text, is shown. Elevation contours are shown at 1500, 2000, 2500, and 3000 m.

Their data set allows them to go back to 2000 and construct annual time series.

And just like Dr Ruth Mottram said in my original storify,

Ruth Mottram Tweet
Tweet used in original storify.

They find all of the features Ruth pointed out (shown in their Figure 4).

They say,

"that June-July 2007 had the most blocking days but did not have the largest melt, although 2007 has been identified as a large melt year in a seasonal sense"

The reason it did not have as much surface melt as 2012 is because the air temperatures brought over the ice sheet by the atmospheric blocking "barely reached 1.5 SDs [above the summer average temperature]". (SDs means standard deviations - basically a measure of how variable the temperature is about the mean.)

In 2012 the atmospheric blocking brought in "a  long-lasting anomaly of 2–2.5 SDs [above the summer average temperature]". This is a bit bland but 2.5 SD's in this data set corresponds to temperatures ~6°C or greater above the summer average on the surface of Greenland. That is why the melt in 2012 was so large.

Häkkinen et al. (2014) make no comment in the paper about the future, or the impact of anthropogenic climate change on such events over Greenland. Looking at various assessments of the scientific literature (e.g the Arctic Report Card) we may draw our own conclusions about whether to expect more of these melting events.

It's very common to hear people harking back to the time when everything was apparently "better". Before the planet was "ruined", before anthropogenic climate change kicked in, and when everybody treated each other with respect.

Of course I don't hold that view.

Polar exploration had a golden age of sorts which is usually called the Heroic Age. It covers the time period when explorers like Mawson, Shackleton, Speirs Bruce and Scott headed South.

I am interested  in the time period before that too.

The British Library have put over a million images on Flickr. With that sort of resource surely there is something polar before the Heroic age?

Searching on the term "Antarctic" throws up a vast number of results -and a couple immediately caught my eye. They were pictures drawn by one of my new favourite artists: the Scot William Gordon Burn Murdoch.

Ever since I started researching and writing about the polar regions I have always been struck by how people seem to imagine them as some sort of "untouched wilderness". This image naturally caught my eye.

Sealing by William Gordon Burn Murdoch
Sealing by William Gordon Burn Murdoch. Source British Library Flickr Stream.

...continue reading

I am working on a polar oceanographic problem at the moment, but the beauty of physics is the principles are universal. That means you can end up reading widely. I came across a very interesting paper (to me):

Gaining insight into Clipperton's lagoon hydrology using tritium
2009 paper in Estuarine, Coastal and Shelf Science

Through the joys of open access a PDF of the paper is available on the Ifremer Archimer institutional repository.

Whilst reading the paper I quickly skimmed over the PDF to see if I was on the right track for what I was interested in. It looked good so I went back to the beginning and starting reading in more detail.

Introduction paragraph 1:

"Clipperton island got the reputation of being one of the most obscure, isolated and
unpleasant places on earth"

I thought "eh?" I like a bit of unpleasantness but...

So I read on...  The paragraph gives a quick history of the occupation of Clipperton Island. It was first occupied as part of the phosphate mining industry. But it doesn't have a happy history.

"In this tiny tropical hell, many became desperate to leave, convinced that the island was driving them mad. During World War I, the islanders were cut off from the mainland and died little by little from scurvy and malnutrition. The survivors, a handful of women and children, became ruled by a madman (the light keeper) who proclaimed himself “King of Clipperton”, raping whomever he wanted and murdering any who resisted. Eventually, the women killed him, putting his reign of terror to an end. By July 1917, three women and eight children were the only ones alive and were picked up by the USS “Yorktown”. Its last permanent occupation was in 1944/45 when President Roosevelt ordered the US Navy to seize the atoll. Soon after World War II ended and the atoll was abandoned"

Philippe et al 2009.

Scurvy, malnutrition, rape and murder. I don't come across that sort of thing very often in the area of oceanography I research.

Clipperton Island is about 580 nautical miles off the coast of Mexico.

There is a very good Wikipedia page on Clipperton Island. This is quite surprising given that the atoll is only 6 km2 with a maximum elevation of 29m. It seems to be pretty regularly visited by members of the amateur radio community, and there was a private expedition there in 2013.

If you are interested in the Law of the Sea it seems that in December 2010 the French claimed an exclusive economic zone around the island under the provisions of the United Nations Commission on the Limits of the Continental Shelf (CLCS).

That would mean this 6 km2 atoll has given the French a territorial claim of 1.52 × 109 km2 of sea bed in the pacific and the ownership of the resources there.

Not bad for a place that can barely sustain human habitation.

And the stuff in the paper about tritium was pretty good as well.