Tag Archives: SMMI

Antarctic sea ice extent remains low compared with the 1981-2010 median extent. This image shows the mean from 1989-93, the extent on 20 November 2017 and the difference between the two. Red colours imply that there is a decreased sea ice extent compared with the mean.

The mean Antarctic sea ice for the years 1989-93 on 20 Nov, the sea ice concentration on 20 Nov 2017 and the difference between the two data sets. Reds imply decreased sea ice compared with the mean, blue shades imply more. The original data come from the DMSP SMMI data set at the NSIDC.
The mean Antarctic sea ice for the years 1989-93 on 20 Nov, the sea ice concentration on 20 Nov 2017 and the difference between the two data sets. Reds imply decreased sea ice compared with the mean, blue shades imply more. The original data come from the DMSP SMMI data set at the NSIDC.

And obvious low region is the vicinity of the Weddell Sea Polynya. I have written about the polynya this season on 17 September and 25 September, as well showing how it developed through the winter on 11 September 2017.

Something exciting is happening in the ocean under the polynya, and based on new data sources such as the SOCCOM buoy that surfaced in the polynya:

Last month, SOCCOM scientists were astonished to discover that a float in the Weddell Sea had surfaced inside the polynya, making contact with satellites in the dead of winter. Its new ocean measurements, transmitted when it surfaced, are being analyzed as part of a study in preparation on Weddell Sea polynyas. With these new observations comes the possibility that the polynya’s secrets may finally be revealed.

We should expect some exciting research articles soon.

Sea ice extent currently ~1.2 million km2 low

The overall sea ice extent is currently ~1.2 million km2 below 1981-2010 median extent. This sounds a lot.

Antarctic sea ice extent (with greater >15% sea ice cover) 18 November 2017. From NSIDC.
Antarctic sea ice extent (with greater >15% sea ice cover) 18 November 2017. From NSIDC.

But at this time of the year the Antarctic sea ice is about to dramatically fall as spring develops. If spring "arrives" early then the extent will - as we see, be relatively low.

Seasonal cycle of Antarctic sea ice extent
Seasonal cycle of Antarctic sea ice extent

Whilst the full on development and opening of the Weddell / Maud Rise Polynya is unusual, if you compare the sea ice on 18 November 2017 with the extent from the same day on 1989-1995 it is clear that the extent is often lower over Maud Rise, at this time.

This is the sea ice on 18 November for 1989, 91, 92, 93, 94, 95 and 18 November 2017. The original data come from the DMSP SMMI data set at the NSIDC.
This is the sea ice on 18 November for 1989, 91, 92, 93, 94, 95 and 18 November 2017. The original data come from the DMSP SMMI data set at the NSIDC.

I will keep watching the sea ice as the summer season develops

MODIS mosaic from the AQUA satellite on 18 November 2017.
MODIS mosaic from the AQUA satellite on 18 November 2017.

** UPDATED 20th November 2017 replacing the first figure from 17  November to 20 November.

3 Comments

The Weddell Sea polynya is an area of open water that sometimes appears in the Weddell Sea over a relatively shallow region called Maud Rise.

The Antarctic sea ice concentration 9 September 2017. The location of the polynya is marked and the original data come from the DMSP SMMI data set at the NSIDC.
The Antarctic sea ice concentration 9 September 2017. The location of the polynya is marked and the original data come from the DMSP SMMI data set at the NSIDC.

In the latest satellite imagery from the DMSP satellite you can see the lower concentration sea ice as the darker blue colour. If you look at the MODIS imagery for the same date you can clear see black which indicates open water in the pack ice.

The MODIS imagery mosaic of Antarctica from 7 September 2017 from the MODIS sensor on the Terra satellite. The pattern in the centre of the image is because high latitudes of Antarctica are still dark at this time in winter.
The MODIS imagery mosaic of Antarctica from 7 September 2017 from the MODIS sensor on the Terra satellite. The pattern in the centre of the image is because high latitudes of Antarctica are still dark at this time in winter.

...continue reading

Sea ice is still relatively low in both the the Arctic spring and Antarctic autumn. A geographical perspective always helps so here is the status of the sea ice concentration 23 April 2017 for both polar regions.

The Arctic

Here is the sea ice concentration 23 April 2017 compared with the  1989-1993 mean on the 23 April. Red shades = less sea ice than the 1989-93 mean on 23 April, and Blue shades = more sea ice than the 1989-93 mean on 23 April.

The mean Arctic sea ice for the years 1989-93 on 23 April, the sea ice concentration on 23 April 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.
The mean Arctic sea ice for the years 1989-93 on 23 April, the sea ice concentration on 23 April 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.

The stand out regions for me are once more (as in my post in January), the Northern Barents Sea is relatively low, along with the Bering Sea and the Sea of Okhotsk. There is a consistent retreat of the ice edge almost everywhere, and comparatively a lot of open water in Hudson Bay.

...continue reading