Monthly Archives: September 2016

On 26th September 2016 the MODIS sensor on The TERRA satellite captured this beautiful image of South Georgia, with Iceberg A66 drifting past.

Iceberg A66 passing South Georgia captured in a MODIS image on the 26 September 2016.
Iceberg A66 passing South Georgia captured in a MODIS image on the 26 September 2016. The image is available on a KML file on the MODIS Websites.

The iceberg A66 is about 15 km at it's widest point in this image.

We can do a bit simple maths. Estimate the iceberg has a 200 m thickness and it is triangular in shape with a base of ~4 km.

the volume =  0.5 x 15 km x 4 km x 0.2 km = 6 km3.

So the relatively small A66 contains of 6000 gigtons of water. It's a lot. But it's not a lot.

Icebergs get their reference number depending on where they originate from. This one has an identifier "A" which means it came from the sector 0° to 90°W - that's the Bellingshausen and Weddell Sea region. You can track icebergs like this both visually - like in in the image above - or using something called a Scatterometer. A scatterometer can measure the winds over the ocean, and because the winds change over the ice one can track the icebergs. Prof David Long at Brigham Young University provides an excellent database of Antarctic iceberg data based on that idea (this is their research paper on how they do that).

If we look at the location data from the ASCAT sensor you can see that A66 is at the tip of the Antarctic Peninsula - but this data is only from this year. I will have to dig a little deeper. A job for later.

The track of Iceberg A66 from the BYU database
The track of Iceberg A66 from the BYU database

Once the icebergs reach the edge of the Weddell Sea they get to South Georgia very quickly. I did write about that in a paper in the OU database Physical oceanography in the Scotia Sea during the CCAMLR 2000 survey, austral summer 2000.

And some of these icebergs (although not A66) ground at South Georgia and ultimately can affect the ecosystem. Jon Amos wrote about some work I did at a San Francisco conference  in 2010 about that - it's still available on the BBC website: Giant icebergs head to watery end at island graveyard.

Giant icebergs head to watery end at island graveyard
Giant icebergs head to watery end at island graveyard. By Jon Amos

Overall A66 is nothing special, this is not an unusual observation.

It is a beautiful image though.

2 Comments

The low sea ice extent I noticed in my previous blog post about Antarctic Sound has extended southwards along the east side of the Antarctic Peninsula.

The sea ice extent along the Antarctic Peninsula 24 September 2016
The sea ice extent along the Antarctic Peninsula 24 September 2016. Data from DMSP SSMIS

The open water that shows up as black in the image above extends to at least as far south as the Antarctic Circle (66° 33′S). Open water along this part of the Antarctic Peninsula is unusual at any time of the year let alone the height of winter. The image below is from the National Snow and Ice Data Centre. It shows  sea ice extent >15% with an outline of the typical extent for that day based on a 30-year (1981-2010) median (orange line).

NSIDC Antarctic sea ice extent 24 September 2016 with the median extent (1981-2010) for this day.
NSIDC Antarctic sea ice extent 24 September 2016 with the median extent (1981-2010) for this day.

You can see how unusual this observation is, and I wrote a general post Antarctic Sea Ice Extent a while ago.

The open water is also very clear in the MODIS imagery as the black wedge between the Antarctic Peninsula, and the sea ice of the Weddell Sea.

The MODIS imagery for the Antarctic Peninsula 25 September 2016.
The MODIS imagery for the Antarctic Peninsula 25 September 2016.

In my previous post I pointed at weather systems as likely being responsible. Now to me it looks like a large system is pushing the whole Weddell Sea sea ice to the east and away from Antarctic Peninsula.

There is always some open water in the pack ice at any time of the year, but it's clear that their is a pathway south right now. I imagine it will close soon and wouldn't be keen to be on a ship in that open water heading south.

What is interesting is the heat transfer from the ocean to the atmosphere that far south at this time of the year will be huge. This is what I wrote about that heat loss for the Arctic.

2 Comments

Just noticed this on the MODIS  sensor on the TERRA satellite image from 10 September 2016.  (Tile Antarctica_rc05c01 if you are interested in that sort of thing)

Antarctic Sound on the tip of the Antarctic Peninsula 10 Sept 2016
Antarctic Sound on the tip of the Antarctic Peninsula 10 Sept 2016

The Antarctic sea ice ice extent map for 10 September 2016 shows an interesting and large low concentration right at the tip of the Antarctic Peninsula

The sea ice extent around Antarctic 10 September 2016. Yellow box is roughly where the MODIS image is, and Antarctic Sound is labelled. Data from DMSP SMMI
The sea ice extent around Antarctic 10 September 2016. Yellow box is roughly where the MODIS image is, and Antarctic Sound is labelled. Data from DMSP SMMI

So why the missing sea ice at the top of the Peninsula?  It could be a storm, or could be heat from the ocean keeping the area ice free. I'll have a look at the data when I've time, but for now I would bet on the ocean.

Interestingly historically it has been a bit of a tough place. Otto Nordenskjöld navigated the sound in December 1902 on the Swedish Antarctic Expedition before their ship, the Antarctic was crushed and lost. They were stranded for two years...