2 Comments

Approaching the middle of May and well into the Arctic sea ice retreat we can see that the sea ice extent (area of ocean with at least 15% sea ice) is still well below the mean over the satellite record.

Arctic sea ice extent to 53 May 2017 from NSIDC.
Arctic sea ice extent to 53 May 2017 from NSIDC.

I like a geographic perspective, so this is the mean sea ice extent 1989-93 on 13 May, the sea ice extent 13 May 2017, and the difference between the two data sets. Reds imply less sea ice than the mean 1989-93, and blues an increased sea ice extent.

The mean Arctic sea ice for the years 1989-93 on 13 May, the sea ice concentration on 13 May 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.
The mean Arctic sea ice for the years 1989-93 on 13 May, the sea ice concentration on 13 May 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.

There appears to be a general trend of the Arctic sea ice edge retreating between the two data sets, but I think this is in places meteorological - that is the winds are compressing the sea ice. I think this because there is a lot of blue (i.e. more sea ice than the 89-93 mean) just north of the sea ice edge.

The Bering Sea appears relatively sea ice free at this time.

On the North West of Greenland you can also see that the North Water Polynya has opened up.

The location of North Water polynya. Image from MODIS data 14 May 2017.
The location of North Water polynya. Image from MODIS data 14 May 2017.

When you zoom in you can see the open water.

North Water polynya. Image from MODIS data 14 May 2017.
North Water polynya. Image from MODIS data 14 May 2017.

North Water is a very famous whale habitat and as the light increases we may see a plankton bloom here.

 

Sea ice is still relatively low in both the the Arctic spring and Antarctic autumn. A geographical perspective always helps so here is the status of the sea ice concentration 23 April 2017 for both polar regions.

The Arctic

Here is the sea ice concentration 23 April 2017 compared with the  1989-1993 mean on the 23 April. Red shades = less sea ice than the 1989-93 mean on 23 April, and Blue shades = more sea ice than the 1989-93 mean on 23 April.

The mean Arctic sea ice for the years 1989-93 on 23 April, the sea ice concentration on 23 April 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.
The mean Arctic sea ice for the years 1989-93 on 23 April, the sea ice concentration on 23 April 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.

The stand out regions for me are once more (as in my post in January), the Northern Barents Sea is relatively low, along with the Bering Sea and the Sea of Okhotsk. There is a consistent retreat of the ice edge almost everywhere, and comparatively a lot of open water in Hudson Bay.

...continue reading

The polynya I saw forming in early February is still clear, and very large in the Southern Weddell Sea. At the moment it is more than than 80,000 km2, although there is clearly a lot of young sea ice covering a large part of the polynya.

The Weddell Sea 5 March 2017 in the Terra MODIS true colour image.
The Weddell Sea 5 March 2017 in the Terra MODIS true colour image.

In my original post I said this was likely formed by winds from the Ronne Ice Shelf.

Well Dr Stef Lhermitte (Delft) has put together the most amazing movie showing the development of the polynya over January and February. It shows satellite sea ice data with winds from the ECMWF overlain.

You can clearly see the winds pushing the sea ice away from the ice shelf as time progresses.

It is just as @StefLhermitte said in his tweet yesterday:

...continue reading

1 Comment

Trying to understand the geographic nature of the very low Antarctic sea ice extent I made the following animation:

Antarctic sea ice extent on 1 March for the years 1989, 1990, 1991, 1992, 1993, 1994, 1995 and 2017. Data from DMSP SMMI.
Antarctic sea ice extent on 1 March for the years 1989, 1990, 1991, 1992, 1993, 1994, 1995 and 2017. Data from DMSP SMMI.

The highlight issues in the graphic are the clear lack of sea ice in the Amundsen/Ross Seas and the Southern Ocean off Dronning Maud land. (If you are not familiar with the names off the seas / locations see the map below).

The Weddell Sea is has a relatively compressed sea ice cover this year - but it's clear there is large inter-annual variability.

Off Wilkes Land the sea ice is heavier this year - and it's easy for this to get lost in the headline story around the very low extent. There are several Antarctic research stations along this coast:

The French Station Dumont d’Urville,

Two Australian Stations of Casey and Davis,

and the Russian Mirny Station.

Here is the NSDIC Antarctic sea ice extent 1 March 2017.

Antarctic sea ice extent (with greater >15% sea ice cover) 1 March 2017. From NSIDC.
Antarctic sea ice extent (with greater >15% sea ice cover) 1 March 2017. From NSIDC.

And finally the promised map from the National Snow and Ice Data Center (NSIDC) with regional seas and other features marked.

The oceans and regional seas around Antarctica, along with other geographical features. From NSIDC.
The oceans and regional seas around Antarctica, along with other geographical features. From NSIDC.

1 Comment

I noticed yesterday that a polynya had formed in front of the Ronne Ice Shelf over the last 2 weeks.

Screengrab from NASA Worldview 17 February 2017
Screengrab from NASA Worldview 17 February 2017

In that image it is about 27,000 kmin area.

I mapped the opening of the polynya from MODIS imagery over the last two weeks. There is cloud in the images but the opening of the polynya is fairly clear.

Formation of the Ronne Polynya 30 January to 14 February 2017.
Formation of the Ronne Polynya 30 January to 14 February 2017.

On 31 January 2017 there is no open water, but then over the 16 day period it opens to the ~27,000 kmin area. If you're eagle eyed you can see that there is thin frazil ice forming in the open water in front of the ice shelf at the end of the sequence.

So what caused it?

...continue reading

1 Comment

Watching the sea ice extent this summer in Antarctica has been a bit surprising. The Antarctic sea ice extent has been tracking at record lows virtually the whole austral summer. We are very close now to the expected sea ice minimum, and this is where we are:

Antarctic sea ice extent 12 Feb 2017 & diff from mean 1989-93 on same day. Blues imply more ice and reds imply less compared with the mean.
Antarctic sea ice extent 12 Feb 2017 & diff from mean 1989-93 on same day. Blues imply more ice and reds imply less compared with the mean.

On the left is the sea ice extent from the DMSP satellite 12 February 2017, and on the right the difference between the mean sea ice extent on 12 Feb over the period 1989-93 and 12 Feb 2017. I chose this time period as the cycle has been generally quite stable from year to year.

The current sea ice extent is:

Antarctic sea ice extent. Downloaded from NSIDC 14 February 2017.
Antarctic sea ice extent. Downloaded from NSIDC 14 February 2017.

It's clear the sea ice over the summer 2016-17 is showing historic lows. But it's also clear from the sea ice extent above that there is little sea ice left to melt out before the summer turns. Where the sea ice remains - mainly in the Weddell Sea and along the coast of Wilkes Land it is clearly densely packed. If the winds change and the remaining sea ice is decompressed then the extent may fall some more.

This is an animation of the Antarctic sea ice extent from 1 January 2017 to 12 February 2017:

The Antarctic sea ice extent 1 January to 12 February 2017. Data from DMSP SMMI
The Antarctic sea ice extent 1 January to 12 February 2017. Data from DMSP SMMI

And finally the difference between the mean sea ice extent by day for the 5-year period 1989-1993 minus the concentration from 1 Jan to 12 Feb 2017. Blue shades imply an increased sea ice extent compared with a 5-year mean, and reds imply a decreased sea ice extent.

The difference between the mean sea ice extent by day for the 5-year period 1989-1993 minus the concentration from 1 Jan to 12 Feb 2017. Blue shades imply an increased sea ice extent compared with a 5-year mean, and reds imply a decreased sea ice extent.
The difference between the mean sea ice extent by day for the 5-year period 1989-1993 minus the concentration from 1 Jan to 12 Feb 2017. Blue shades imply an increased sea ice extent compared with a 5-year mean, and reds imply a decreased sea ice extent.

Not long until the Antarctic sea ice minimum.

The Metropolitan Museum of Art has made more than a third of a million images both public domain and searchable online. This is one of my current favourites:

An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford and painted in 1871.

An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871
An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871

If you look really closely you can see it is a steam assisted ship.

Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.
Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.

I really like the colours in the sea ice in the foreground. It's hard not to see that when you are in the sea ice.

Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.
Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.

And let's not forget the ice bear in the foreground.

 

Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.
Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.

The caption on the Met page makes clear they were hunting this bear:

In 1861 the marine painter William Bradford made the first of his eight expeditions to the Arctic. This painting, based on photographs and sketches produced during his final trip, in 1869, shows the artist’s steamer, Panther, plying its way through the summer ice along the northern coast of Greenland. Panther was one of numerous vessels engaged in the search for the Northwest Passage between the Atlantic and Pacific Oceans. According to Bradford’s journal, the ship’s crew had decided to hunt the polar bear seen in the foreground, “anxious to possess so fine a skin,” but the bear made a parting glance over its shoulder before heading for the water, managing to escape its pursuers.

But it is art for sure.

There is no way you could get an iceberg with this sort of freeboard close to the shore...

Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.
Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.

And I love the detail of a wrecked ship mast on the left.

Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.
Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.

There is a long history of romantic artists balancing the struggle of man against the icy wastes. My all time favourite in that category is Landseer's Man Proposes, God Disposes.

Man Proposes, God Disposes by Edward Landseer 1864.
Man Proposes, God Disposes by Edward Landseer 1864.

Thanks Metropolitan museum for putting it online.

The sea ice around Antarctic is currently still at an historic low. As usual I think it is good to look at a geographic perspective on the sea ice distribution. This is the sea ice concentration 22 January 2017 compared with the  1989-1993 mean on the 22 January.

RED shades = less sea ice than the 1989-93 mean on 22 January.

BLUE shades = more sea ice than the 1989-93 mean on 22 January.

The mean Antarctic sea ice for the years 1989-93 on 22 January, the sea ice concentration on 22 January 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.
The mean Antarctic sea ice for the years 1989-93 on 22 January, the sea ice concentration on 22 January 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.

The Amundsen Sea has very low sea ice

Amundsen Sea has very low sea ice in January 2017
Amundsen Sea has very low sea ice in January 2017

Probably for me the most striking feature is the extremely low sea ice concentration from Pine Island Bay through to the Ronne Ice Shelf - this is the Amundsen Sea. We are not going to see much more retreat of of the sea ice in this sector as it has already melted. I think it will stay open water until the freeze up begins some around the end of February. It would have been a great year to do ship based oceanography along that coast. I wonder if their could be an impact on ice shelf melt here. It is possible but as you can see from this article - it is water away from the surface and a few hundred metres deep that is in contact with the glacial ice in the Amundsen Sea Embayment, Overall this has to be a result of the recent El Nino, and is a follow on from the polynya events we saw hear in the late winter.

The Bellingshausen Sea has very relatively high sea ice

In contrast you can see it would not be a good year to be working in the Bellingshausen Sea.

Sea ice extent is currently relatively high in the Bellingshausen Sea.
Sea ice extent is currently relatively high in the Bellingshausen Sea.

Nevertheless, as expected, it was possible to finally relieve the British Antarctic Survey Rothera Base in January.

The Weddell Sea is a game of two halves

Sea ice in the Weddell Sea is now compressed against the Antarctic Peninsula
Sea ice in the Weddell Sea is now compressed against the Antarctic Peninsula

The Weddell Sea ice is at this stage in the summer is compressed against the Antarctic Peninsula. This means that there is heavier sea ice to the close to the Peninsula, and much lower sea ice than expected in the rest of the Weddell Sea. If you look at the MODIS Terra Image you can pick out a very sharp sea ice edge.

MODIS image from the TERRA satellite 23 January 2017. The sea ice edge in the Weddell Sea is very sharp.
MODIS image from the TERRA satellite 23 January 2017. The sea ice edge in the Weddell Sea is very sharp.

Shackleton would have been in trouble this summer if he was heading to Elephant Island.

Towards the annual Antarctic sea ice extent minimum.

We expect the sea ice to reach a minimum towards the end of February. Clearly there are places where there is no more sea ice to melt. Where sea ice is present, it is all down to winds over the next month. If they change and move the pack towards open water then - just as we have seen in the Arctic, the concentration could fall much lower. If the winds continue as they have then we could expect the extent fall to slowly as the seasonal melt continues.

Overall it is still to be likely a record breaking year in the Antarctic sea ice extent record.