Science

1 Comment

Sea ice continues to be very low in the Arctic this winter. A geographical perspective always helps so here is the status of the sea ice concentration 18 January 2017 compared with the  1989-1993 mean on the 18 January.

RED shades = less sea ice than the 1989-93 mean on 18 January.

BLUE shades = more sea ice than the 1989-93 mean on 18 January.

The mean Arctic sea ice for the years 1989-93 on 18 January, the sea ice concentration on18 January 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.
The mean Arctic sea ice for the years 1989-93 on 18 January, the sea ice concentration on18 January 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.

A few interesting areas that caught my eye:

Geographic Areas in the Arctic with a strong absence of sea ice on 18 January 2017.
Geographic Areas in the Arctic with a strong absence of sea ice on 18 January 2017.

The first highlight region is the Northern Barents Sea. Sea ice has been very low here all winter, and this situation continues. Because the sea ice has been very late, the polar bears on Svalbard will be impacted, and it has been an issue in Longyearbyen....

Polar bears in Longyearbyen
Polar bears in Longyearbyen.

...continue reading

1 Comment

Project MIDAS publicised on Friday that a huge iceberg is going to calve from the Larsen C Ice Shelf. This was written up a a great story on the BBC news website Huge Antarctic iceberg poised to break away.  I understand a little about this stuff so got drawn into the media around it. Here is a BBC News interview on 6 January 2017.

It was great to see Antarctica in the news and it was brilliant to see so many high quality interviews from so many colleagues to different outlets. I may try and collate some of these in the next few days.

2 Comments

The Arctic

It's been quite a year in the Arctic. Over the winter 2015/6 we had the strongest and coldest Arctic polar vortex of the last 68 years. This contributed to a low maximum in Arctic sea ice extent. At that stage only the locals and the scientists were looking, and I wrote about this in a blog post called Arctic sea ice 2016. This was followed by the joint second lowest Arctic summer sea ice extent.

Unusual weather in the early winter led to records being broken and the sea ice the Arctic sea has been the lowest recorded in the satellite record for the time of year.

Where are we at the Northern winter solstice?

The mean Arctic sea ice for the years 1989-93 on 21 December, the sea ice concentration on 21 December 2016 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.
The mean Arctic sea ice for the years 1989-93 on 21 December, the sea ice concentration on 21 December 2016 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.

The ice edges have retreated compared with 1989 - but as I wrote about in Record Low Arctic Sea Ice Extent we still have the very low sea ice concentration in the Barents Sea. There is also  still a very low concentration region north of the Bering Strait but the the Chukchi Sea and Hudson Bay have mostly frozen over.

...continue reading

2 Comments

I was asked “what is an easy way to get a satellite image into Google Earth?”. Once I explained how I do it I thought it may be of interest to others. NASA have provided a really excellent web interface to some of their visual data called Worldview.

The Worldview description puts into perspective how good it is.

The Worldview tool from NASA's EOSDIS provides the capability to interactively browse global, full-resolution satellite imagery and then download the underlying data. Most of the 200+ available products are updated within three hours of observation, essentially showing the entire Earth as it looks "right now"

More than 200 data products within three hours…

Open worldview and this is the screen you are greeted with. It is easy to use. The key regions are the projection / copy / link tool in the yellow square on the right, the date control in the yellow box on the bottom of the browser screen and the layers control in the yellow box on the left.

Worldview opening screen.
Worldview opening screen.

I do recommend following the tour to find your way around the data sets.

Worldview tour screen
Worldview tour screen

If you click the layers button (red on the left) this is just a part of the choice of real time data you can easily access.

Some of the data choices available in WorldView
Some of the data choices available in Worldview

So you select the data you want to see, and then you can zoom in and easily download areas of interest. For some reason I always seem to find my way at this view

Worldview Antarctic stereographic view.
Worldview Antarctic stereographic view.

This movie I made shows how you can get  imagery from Worldview easily into Google Earth.

I hope you find this useful. It's easy to spend a lot of time looking at this data.

Navigation charts in Antarctica may not be as good as you think. It makes sailing in those regions a little more exciting than you could hope. Here is an example.

The coastline of Rothschild Island just to the west of Alexander Island, Antarctica. The navigation chart says the coastline location could be 5 miles in error
The coastline of Rothschild Island just to the west of Alexander Island, Antarctica. The navigation chart says the coastline location could be 5 miles in error

Five miles wrong... What does that mean?

Here is London with a 5 mile radius circle drawn on it.

London with a 5 mile circle drawn on it
London with a 5 mile circle drawn on it.

If you sailed your ship to a position - say the edge of Rothschild Island, you would not know the exact location of that coast to within the radius of that circle.

Just get your head around that. In this age of satellites, in 2016 we don't know the location of coastline of Antarctica to the same level of accuracy that we already know the topography of Mars, Venus and our Moon.

Why are they so bad?

As usual there are lots of reasons. Most of the coastlines were mapped out by people on sailing ships and huskie drawn sledges decades before the satellites were launched. That means the outlines of the coasts and water depths tend to be excellent. But absolute position - basically the origin of the co-ordinate system - can be out.

The bottom line is if you are trying to calculate position with a sextant and clock, it's hard enough in good conditions (for me!). But in a snowstorm when it has been overcast for several days? The historical navigators are my heroes.

In practice today does this lack of accuracy matter?

Charcot Island. A photograph of a repeater of the navigation display of RRS James Clark Ross in 2008.
Charcot Island. A photograph of a repeater of the navigation display of RRS James Clark Ross in 2008.

That picture of the ship's track tells the story. The ship has skirted the coast of the island, but according to the chart we ended up on land! I have a few examples like this from Antarctica. And even the mighty Google Earth has Charcot Island wrong.

A screengrab of Charcot Island from Google Earth Pro 20 Nov 2016. The island is displaced by ~11 nautical miles.
A screengrab of Charcot Island from Google Earth Pro 20 Nov 2016. The island is displaced by ~11 nautical miles.

Polar ship Captains, officers and crews take ships into areas that are genuinely unexplored. We don't know the coastline or the water depths well.

In fact, in Antarctica all you really can be certain of is you know you are going to be surrounded by icebergs and sea ice.

It's a big responsibility.

1 Comment

The sea Ice is too heavy for the RRS James Clark Ross to make Rothera base right now. You may have thought the sea ice on the satellite images didn't look too bad, but it's all about how thick the sea ice is, and where the open water is.

To quote the radio officer Mike Gloistein:

The sea-ice around the bottom of Adelaide Island has been heavy and whilst (for those of you who look at the satellite pictures) there are some leads and areas of open water,  they are close to land and if we took that route (which also includes shallow water and rocks) and the weather then pushed the ice inland,  the ship could easily become stuck between a rock and a hard place.

And then the ship could get seriously stuck just like I said the John Biscoe did in my previous post. In that case the ship was rescued by Polarstern.

This was the satellite image I posted yesterday:

The MODIS satellite image off Adelaide Island 25 Nov 2016, with the location of the RRS James Clark Ross 0000 28 November 2016.
The MODIS satellite image off Adelaide Island 25 Nov 2016, with the location of the RRS James Clark Ross 0000 28 November 2016.

And this is a navigation chart of that region.

Section of the Navigation Chart around the southern tip of Adelaide Island.
Section of the Navigation Chart around the southern tip of Adelaide Island.

The light blue shading is shallow water and it's not a great place for a ship to go without freedom of navigation. The sea ice takes away that freedom. This is of course a very sensible choice by the ships Master, and exactly the same thing happened to a voyage I was on in 2004.

In another few weeks it will be clear for them.

I don't think this was predictable. You really have to be on the ground to see what the conditions are to make a call on whether it is safe or not. Two months ago on the 6 October I blogged about the sea ice and the potential of this happening, and said:

There are a lot of Antarctic research stations on the west of the Antarctic Peninsula, including Rothera, the largest British Base.  If the winds maintain the westerly direction then I can imagine it could be slow to resupply the base this season. There is time for it to change. According to the published schedule the ship is not due to arrive until 27 November 2016.

A slow resupply is not uncommon and I have been on at least one unsuccessful resupply voyage in my career. I took the picture below on 11 December 2004 under similar conditions.

James Clark Ross making very slow progress in compressed sea ice in Marguerite Bay, the Western Antarctic Peninsula.
James Clark Ross making very slow progress in compressed sea ice in Marguerite Bay, the Western Antarctic Peninsula.

Although it is not predictable, the fantastic British Antarctic Survey Operations will have planned for the consequences.

For a last point on the left of the navigational chart is one of my favourite place names:

Fullastern Rock to the west of Adelaide Island
Fullastern Rock to the west of Adelaide Island

As it says on the UK Antarctic Place Names website:

Fullastern Rock (67° 36′ 58″ S, 69° 25′ 59″ W) is a submerged rock on the west side of Johnston Passage, to the west of Adelaide Island. It was first charted by a Royal Navy Hydrographic Survey Unit from RRS John Biscoe in 1963.  The ship was compelled to go full astern to avoid this hazard  – a story succinctly captured by this evocative name!

 

1 Comment

RRS James Clark Ross is on route to Rothera, the largest British Antarctic Survey research Station. In the next few hours to get to the base she will have to pass what looks like a continuous sea ice band about 15 km wide, before she enters some looser pack. To get their she will have to do some icebreaking. The band of ice has been stationary for over a week.

If you want to follow the action the ship has a webcam, or you can check the Radio Office Mike Gloistein's update page. The web cam is as I write this but I'm sure it will be switched on soon.

The MODIS satellite image off Adelaide Island 25 Nov 2016, with the location of the RRS James Clark Ross 0000 28 November 2016.
The MODIS satellite image off Adelaide Island 25 Nov 2016, with the location of the RRS James Clark Ross 0000 28 November 2016.

The satellite image is from 25 November 2016, but the sea ice doesn't look like it has changed significantly since then. I chose that date simply because it is relatively cloud free.

The ship has about 130 km to run so could dock later today - but it could be tomorrow given the sea ice.  The path I have shown in red looks quite a long way south of the Island - but close in it gets quite shallow. If your interested in your polar history the ship RRS John Biscoe was actually abandoned in this region for a while before being rescued by the German ship Polarstern.

This is as The Antarctic Report points out, quite early for the ship to reach the base.

The track of the ship is online along with the weather conditions it is experiencing. At at about 0°C it is currently warmer than a lot of the UK.

Dr Helen Jones is the doctor on the James Clark Ross and she is writing a blog Baby it's cold down here.

--UPDATE 1050z --

You can see James Clark Ross is now in the ice and heading for the band of relatively open water at the southern tip of Adelaide Island.

This is an image from the webcam.

I wrote about what a water sky is a while ago.

--UPDATE 0650z 29 November --

It was too early and the RRS James Clark Ross didn't make Rothera.

To quote the radio officer Mike Gloistein:

The sea-ice around the bottom of Adelaide Island has been heavy and whilst (for those of you who look at the satellite pictures) there are some leads and areas of open water,  they are close to land and if we took that route (which also includes shallow water and rocks) and the weather then pushed the ice inland,  the ship could easily become stuck between a rock and a hard place.

And get stuck just like the John Biscoe...

 

2 Comments

The extent and thickness of the Arctic sea ice is decreasing for every month of the year. But looking at straight lines on graphs with a relentless downward trend it’s easy to lose the geographic sense of what is happening.

The red areas in the plot below show where ice was absent on 3 March 2016 compared with the mean 1989-93 at the height of the winter. I chose 1989-93 the comparison period as it is just before the start of the relatively rapid decline in we observe in Arctic sea ice.

The difference between the daily ice extent, in each grid cell and the mean based on historical data for the years 1989-93. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.
The difference between the daily ice extent, in each grid cell and the mean based on historical data for the years 1989-93. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.

As you would expect there is not a lot of blue in the plot, and the ice edge has retreated virtually everywhere. The stand out region is the Northern Barents Sea. On the NSDIC website you can see that the decline of sea ice in the Kara and Barents Seas is part of the long-term trend.

...continue reading

6 Comments

This is the the full years data to 21 November for the anomalies of the sea ice extent in 2016. See my blog post Antarctic sea ice 2016: Historic lows for full context.

The plot shows the difference between the daily ice extent, in each grid cell, for the year to 21 November 2016, and the mean, for each day, based on historical data for the 5 year period 1989-93.

Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean.

The five year average sea ice extent - the extent for the same day in 2016. Red colours indicate less sea ice than the 5 year mean.
The five year average sea ice extent (1989-93) - the extent for the same day in 2016. Red colours indicate less sea ice than the 5 year mean.

To make the plot for each day of the year and each grid cell I worked out the mean sea ice extent for 5-year period 1989-1993. I then used this calculated mean taken away from the 2016 data for the same day to derive the anomaly maps.

For example if the plot shows very dark blue that means that there is 100% sea ice cover in that grid cell in 2016 and none in the 1989-93 mean.  A dark red means there is no sea ice in 2016 where we would expect 100% sea ice cover.

The original data come from  the DMSP SMMI data set at the NSIDC.

A post describing this data is Antarctic sea ice 2016: Historic lows