Author Archives: Mark Brandon

At this time of the year we should expect the Antarctic sea ice to be growing rapidly, but after the historic lows of last Antarctic summer, we can see that whilst it is rapidly advancing, the sea ice extent (the area of ocean covered by >15% of sea ice) it is still ~1 ¼ million km2 below the median from 1981-2010.

Antarctic sea ice extent (with greater >15% sea ice cover) 15 May 2017. From NSIDC.
Antarctic sea ice extent (with greater >15% sea ice cover) 13 May 2017. From NSIDC.

There is not a consistent trend in Antarctic sea ice extent, and much regional interannual variability. The plot below shows the sea ice extent on 13 May for each of the years 1989-95, and 13 May 2017.

Antarctic sea ice extent on 13 May for the years 1989, 1990, 1991, 1992, 1993, 1994, 1995 and 2017. Data from DMSP SMMI.
Antarctic sea ice extent on 13 May for the years 1989, 1990, 1991, 1992, 1993, 1994, 1995 and 2017. Data from DMSP SMMI.

The image above shows the sort of variability we expect in the Antarctic sea ice extent. It is helpful too to see where the sea is currently is and isn't compared with the mean from 1989-93.

The mean Antarctic sea ice for the years 1989-93 on 13 May, the sea ice concentration on 13 May 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.
The mean Antarctic sea ice for the years 1989-93 on 13 May, the sea ice concentration on 13 May 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.

The regions in May 2017 with the greatest deficit of sea ice remain the Amundsen and Ross Sea, and the Eastern Weddell Sea and off the coast of Dronning Maud land. As I said in my last Antarctic sea ice post it is likely the freeze up is delayed because of the heat gained by the ocean in the Antarctic summer of 2016/17.

You can also see in the South West Weddell Sea the Ronne Polynya I wrote about in March 2017 is still seen in the sea ice concentration data. In the visible satellite data you can also see this open water.

The Ronne Polynya can see seen in the South West Weddell Sea satellite data on 15 May 2017. The box marks the approximate image of the SAR image below.
The Ronne Polynya can see seen in the South West Weddell Sea satellite data on 15 May 2017. The box marks the approximate image of the SAR image below.

In the Sentinel 1 SAR data from the 15 May (From PolarView), the growth of the sea ice in the polynya is clear.

Sentinel 1 Synthetic Aperture Radar (SAR) Image 15 May 2017 in the South West Weddell Sea. From PolarView.
Sentinel 1 Synthetic Aperture Radar (SAR) Image 15 May 2017 in the South West Weddell Sea. From PolarView.

This ice growth is important for the ocean as it means the salinity of the waters just beneath the sea ice will be increasing.

I'll keep watching the polynya to see if and when it closes up. And I will also keep looking at the sea ice.

 

2 Comments

Approaching the middle of May and well into the Arctic sea ice retreat we can see that the sea ice extent (area of ocean with at least 15% sea ice) is still well below the mean over the satellite record.

Arctic sea ice extent to 53 May 2017 from NSIDC.
Arctic sea ice extent to 53 May 2017 from NSIDC.

I like a geographic perspective, so this is the mean sea ice extent 1989-93 on 13 May, the sea ice extent 13 May 2017, and the difference between the two data sets. Reds imply less sea ice than the mean 1989-93, and blues an increased sea ice extent.

The mean Arctic sea ice for the years 1989-93 on 13 May, the sea ice concentration on 13 May 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.
The mean Arctic sea ice for the years 1989-93 on 13 May, the sea ice concentration on 13 May 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.

There appears to be a general trend of the Arctic sea ice edge retreating between the two data sets, but I think this is in places meteorological - that is the winds are compressing the sea ice. I think this because there is a lot of blue (i.e. more sea ice than the 89-93 mean) just north of the sea ice edge.

The Bering Sea appears relatively sea ice free at this time.

On the North West of Greenland you can also see that the North Water Polynya has opened up.

The location of North Water polynya. Image from MODIS data 14 May 2017.
The location of North Water polynya. Image from MODIS data 14 May 2017.

When you zoom in you can see the open water.

North Water polynya. Image from MODIS data 14 May 2017.
North Water polynya. Image from MODIS data 14 May 2017.

North Water is a very famous whale habitat and as the light increases we may see a plankton bloom here.

 

Sea ice is still relatively low in both the the Arctic spring and Antarctic autumn. A geographical perspective always helps so here is the status of the sea ice concentration 23 April 2017 for both polar regions.

The Arctic

Here is the sea ice concentration 23 April 2017 compared with the  1989-1993 mean on the 23 April. Red shades = less sea ice than the 1989-93 mean on 23 April, and Blue shades = more sea ice than the 1989-93 mean on 23 April.

The mean Arctic sea ice for the years 1989-93 on 23 April, the sea ice concentration on 23 April 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.
The mean Arctic sea ice for the years 1989-93 on 23 April, the sea ice concentration on 23 April 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.

The stand out regions for me are once more (as in my post in January), the Northern Barents Sea is relatively low, along with the Bering Sea and the Sea of Okhotsk. There is a consistent retreat of the ice edge almost everywhere, and comparatively a lot of open water in Hudson Bay.

...continue reading

The polynya I saw forming in early February is still clear, and very large in the Southern Weddell Sea. At the moment it is more than than 80,000 km2, although there is clearly a lot of young sea ice covering a large part of the polynya.

The Weddell Sea 5 March 2017 in the Terra MODIS true colour image.
The Weddell Sea 5 March 2017 in the Terra MODIS true colour image.

In my original post I said this was likely formed by winds from the Ronne Ice Shelf.

Well Dr Stef Lhermitte (Delft) has put together the most amazing movie showing the development of the polynya over January and February. It shows satellite sea ice data with winds from the ECMWF overlain.

You can clearly see the winds pushing the sea ice away from the ice shelf as time progresses.

It is just as @StefLhermitte said in his tweet yesterday:

...continue reading

1 Comment

Trying to understand the geographic nature of the very low Antarctic sea ice extent I made the following animation:

Antarctic sea ice extent on 1 March for the years 1989, 1990, 1991, 1992, 1993, 1994, 1995 and 2017. Data from DMSP SMMI.
Antarctic sea ice extent on 1 March for the years 1989, 1990, 1991, 1992, 1993, 1994, 1995 and 2017. Data from DMSP SMMI.

The highlight issues in the graphic are the clear lack of sea ice in the Amundsen/Ross Seas and the Southern Ocean off Dronning Maud land. (If you are not familiar with the names off the seas / locations see the map below).

The Weddell Sea is has a relatively compressed sea ice cover this year - but it's clear there is large inter-annual variability.

Off Wilkes Land the sea ice is heavier this year - and it's easy for this to get lost in the headline story around the very low extent. There are several Antarctic research stations along this coast:

The French Station Dumont d’Urville,

Two Australian Stations of Casey and Davis,

and the Russian Mirny Station.

Here is the NSDIC Antarctic sea ice extent 1 March 2017.

Antarctic sea ice extent (with greater >15% sea ice cover) 1 March 2017. From NSIDC.
Antarctic sea ice extent (with greater >15% sea ice cover) 1 March 2017. From NSIDC.

And finally the promised map from the National Snow and Ice Data Center (NSIDC) with regional seas and other features marked.

The oceans and regional seas around Antarctica, along with other geographical features. From NSIDC.
The oceans and regional seas around Antarctica, along with other geographical features. From NSIDC.

1 Comment

I noticed yesterday that a polynya had formed in front of the Ronne Ice Shelf over the last 2 weeks.

Screengrab from NASA Worldview 17 February 2017
Screengrab from NASA Worldview 17 February 2017

In that image it is about 27,000 kmin area.

I mapped the opening of the polynya from MODIS imagery over the last two weeks. There is cloud in the images but the opening of the polynya is fairly clear.

Formation of the Ronne Polynya 30 January to 14 February 2017.
Formation of the Ronne Polynya 30 January to 14 February 2017.

On 31 January 2017 there is no open water, but then over the 16 day period it opens to the ~27,000 kmin area. If you're eagle eyed you can see that there is thin frazil ice forming in the open water in front of the ice shelf at the end of the sequence.

So what caused it?

...continue reading

1 Comment

Watching the sea ice extent this summer in Antarctica has been a bit surprising. The Antarctic sea ice extent has been tracking at record lows virtually the whole austral summer. We are very close now to the expected sea ice minimum, and this is where we are:

Antarctic sea ice extent 12 Feb 2017 & diff from mean 1989-93 on same day. Blues imply more ice and reds imply less compared with the mean.
Antarctic sea ice extent 12 Feb 2017 & diff from mean 1989-93 on same day. Blues imply more ice and reds imply less compared with the mean.

On the left is the sea ice extent from the DMSP satellite 12 February 2017, and on the right the difference between the mean sea ice extent on 12 Feb over the period 1989-93 and 12 Feb 2017. I chose this time period as the cycle has been generally quite stable from year to year.

The current sea ice extent is:

Antarctic sea ice extent. Downloaded from NSIDC 14 February 2017.
Antarctic sea ice extent. Downloaded from NSIDC 14 February 2017.

It's clear the sea ice over the summer 2016-17 is showing historic lows. But it's also clear from the sea ice extent above that there is little sea ice left to melt out before the summer turns. Where the sea ice remains - mainly in the Weddell Sea and along the coast of Wilkes Land it is clearly densely packed. If the winds change and the remaining sea ice is decompressed then the extent may fall some more.

This is an animation of the Antarctic sea ice extent from 1 January 2017 to 12 February 2017:

The Antarctic sea ice extent 1 January to 12 February 2017. Data from DMSP SMMI
The Antarctic sea ice extent 1 January to 12 February 2017. Data from DMSP SMMI

And finally the difference between the mean sea ice extent by day for the 5-year period 1989-1993 minus the concentration from 1 Jan to 12 Feb 2017. Blue shades imply an increased sea ice extent compared with a 5-year mean, and reds imply a decreased sea ice extent.

The difference between the mean sea ice extent by day for the 5-year period 1989-1993 minus the concentration from 1 Jan to 12 Feb 2017. Blue shades imply an increased sea ice extent compared with a 5-year mean, and reds imply a decreased sea ice extent.
The difference between the mean sea ice extent by day for the 5-year period 1989-1993 minus the concentration from 1 Jan to 12 Feb 2017. Blue shades imply an increased sea ice extent compared with a 5-year mean, and reds imply a decreased sea ice extent.

Not long until the Antarctic sea ice minimum.

The Metropolitan Museum of Art has made more than a third of a million images both public domain and searchable online. This is one of my current favourites:

An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford and painted in 1871.

An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871
An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871

If you look really closely you can see it is a steam assisted ship.

Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.
Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.

I really like the colours in the sea ice in the foreground. It's hard not to see that when you are in the sea ice.

Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.
Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.

And let's not forget the ice bear in the foreground.

 

Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.
Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.

The caption on the Met page makes clear they were hunting this bear:

In 1861 the marine painter William Bradford made the first of his eight expeditions to the Arctic. This painting, based on photographs and sketches produced during his final trip, in 1869, shows the artist’s steamer, Panther, plying its way through the summer ice along the northern coast of Greenland. Panther was one of numerous vessels engaged in the search for the Northwest Passage between the Atlantic and Pacific Oceans. According to Bradford’s journal, the ship’s crew had decided to hunt the polar bear seen in the foreground, “anxious to possess so fine a skin,” but the bear made a parting glance over its shoulder before heading for the water, managing to escape its pursuers.

But it is art for sure.

There is no way you could get an iceberg with this sort of freeboard close to the shore...

Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.
Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.

And I love the detail of a wrecked ship mast on the left.

Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.
Detail from: An Arctic Summer: Boring Through the Pack in Melville Bay by William Bradford, 1871.

There is a long history of romantic artists balancing the struggle of man against the icy wastes. My all time favourite in that category is Landseer's Man Proposes, God Disposes.

Man Proposes, God Disposes by Edward Landseer 1864.
Man Proposes, God Disposes by Edward Landseer 1864.

Thanks Metropolitan museum for putting it online.