Author Archives: Mark Brandon

Being interested in the Weddell Polynya I plotted some time series data from 1 September 2017 to 23 November 2017. On the left-hand panel, you can see the see the sea ice concentration, on the right-hand panel, the anomaly of the concentration each day compared with a mean from 1989-93.

The Weddell Polynya is the low concentration region at approximately 12:00 in the movies below.

 

You can see the Weddell Polynya isn’t stationary.

You can also see the sea ice is still relatively low compared to the historic record. We should expect this after the extreme low sea ice from ~October 2016 onward.

Antarctic sea ice extent (with greater >15% sea ice cover) 23 November 2017. From NSIDC.
Antarctic sea ice extent (with greater >15% sea ice cover) 23 November 2017. From NSIDC.

I will write some more about this next week but for interest here is the Antarctic sea ice extent anomaly for 2017.

I made these movies using the excellent Antarctic Mapping Toolbox by Chad Greene. Antarctica is the Landsat Image Mosaic Of Antarctica (LIMA), and the coastline and shelf outlines come from the BEDMAP2 data set. Sea ice data is from NSDIC.

Antarctic sea ice extent remains low compared with the 1981-2010 median extent. This image shows the mean from 1989-93, the extent on 20 November 2017 and the difference between the two. Red colours imply that there is a decreased sea ice extent compared with the mean.

The mean Antarctic sea ice for the years 1989-93 on 20 Nov, the sea ice concentration on 20 Nov 2017 and the difference between the two data sets. Reds imply decreased sea ice compared with the mean, blue shades imply more. The original data come from the DMSP SMMI data set at the NSIDC.
The mean Antarctic sea ice for the years 1989-93 on 20 Nov, the sea ice concentration on 20 Nov 2017 and the difference between the two data sets. Reds imply decreased sea ice compared with the mean, blue shades imply more. The original data come from the DMSP SMMI data set at the NSIDC.

And obvious low region is the vicinity of the Weddell Sea Polynya. I have written about the polynya this season on 17 September and 25 September, as well showing how it developed through the winter on 11 September 2017.

Something exciting is happening in the ocean under the polynya, and based on new data sources such as the SOCCOM buoy that surfaced in the polynya:

Last month, SOCCOM scientists were astonished to discover that a float in the Weddell Sea had surfaced inside the polynya, making contact with satellites in the dead of winter. Its new ocean measurements, transmitted when it surfaced, are being analyzed as part of a study in preparation on Weddell Sea polynyas. With these new observations comes the possibility that the polynya’s secrets may finally be revealed.

We should expect some exciting research articles soon.

Sea ice extent currently ~1.2 million km2 low

The overall sea ice extent is currently ~1.2 million km2 below 1981-2010 median extent. This sounds a lot.

Antarctic sea ice extent (with greater >15% sea ice cover) 18 November 2017. From NSIDC.
Antarctic sea ice extent (with greater >15% sea ice cover) 18 November 2017. From NSIDC.

But at this time of the year the Antarctic sea ice is about to dramatically fall as spring develops. If spring "arrives" early then the extent will - as we see, be relatively low.

Seasonal cycle of Antarctic sea ice extent
Seasonal cycle of Antarctic sea ice extent

Whilst the full on development and opening of the Weddell / Maud Rise Polynya is unusual, if you compare the sea ice on 18 November 2017 with the extent from the same day on 1989-1995 it is clear that the extent is often lower over Maud Rise, at this time.

This is the sea ice on 18 November for 1989, 91, 92, 93, 94, 95 and 18 November 2017. The original data come from the DMSP SMMI data set at the NSIDC.
This is the sea ice on 18 November for 1989, 91, 92, 93, 94, 95 and 18 November 2017. The original data come from the DMSP SMMI data set at the NSIDC.

I will keep watching the sea ice as the summer season develops

MODIS mosaic from the AQUA satellite on 18 November 2017.
MODIS mosaic from the AQUA satellite on 18 November 2017.

** UPDATED 20th November 2017 replacing the first figure from 17  November to 20 November.

3 Comments

As daylight has returned to Antarctica it is straightforward to pick out polynya forming on the edge of the Antarctic continent.

This one by the Stange Ice Shelf and Rydberg Peninsula caught my eye. It is a latent heat polynya formed as the winds push the sea ice away from the land to reveal the ocean that appears black beneath.

The wispy trails of grey which appear in the black are new sea ice forming as frazil ice.

A wind formed latent heat polynya forming in front of the Rydberg Peninsula and Stange ice Shelf, 22-26 October 2017.
A latent heat polynya forming in front of the Rydberg Peninsula and Stange ice Shelf, 22-26 October 2017.

This is the location of the peninsula.

The location of the Rydberg Peninsula.
The location of the Rydberg Peninsula.

I visited that area in 2007 and took this picture. You can a thin skim of young nilas ice in front of the ice shelf, and sea smoke too.

The Stange Ice Shelf with a thin skim of sea ice in front.
The Stange Ice Shelf with a thin skim of sea ice in front.

With three of my Open University colleagues: Dr Phil Sexton, Dr Pallavi Anand, and Dr Mandy Dyson, I have been working in the background on a new landmark TV series called Blue Planet 2.

 

This incredible series has been made by the BBC Natural History Unit with the Open University as co-producers. It has seven stunning episodes and will be broadcast in the UK at the end of October 2017.

Yesterday was the World Royal Premiere at the BFI Imax with Sir David Attenborough, Prince William, Radiohead, Hans Zimmer, and a team of BBC program makers that is too long for this post.

The prequel above was released after the premiere.

Episode one one the big Imax screen was stunning, and just after there was a Q&A led by Liz Bonnin with some of the key people:

Sir David Attenborough, James Honeyborne, Orla Doherty, Mark Brownlow and Hans Zimmer.

Liz Bonnin interviewing Sir David Attenborough After the World Premiere of Blue Planet 2.
Liz Bonnin interviewing Sir David Attenborough After the World Premiere of Blue Planet 2.

It's been a brilliant experience to work with so many incredible film makers - many of whom also have PhDs to go with their artistic and technical talent. You often hear about how the media want to tell their own story - but in my experience the NHU just want it to be the best - and, of course, correct.

I'm proud to have been a small cog in the mighty and incredible machine that made this series, and  I'm looking forward to seeing how it is received.

It has been an amazing experience to be one of four marine scientists at The Open University to have contributed to the series. As well as helping the production team we've been developing interactive learning materials and a poster for the general public and our students that will also be released at the end of October.

I hope the film makers get the awards I think they deserve for making such a powerful work.

 

3 Comments

The polynya over Maud Rise was visible in a beautiful clear MODIS image on 25 September. It is currently ~40,000 km2 of open water in the middle of the Antarctic winter sea ice. This will be some impressive heat loss.

MODIS image of the polyna over Maud rise on 25 Sept 2017. The black is ~40,000km2 of open water.
MODIS image of the polyna over Maud rise on 25 Sept 2017. The black is ~40,000km2 of open water.

This is the polynya in the SMMI Data for the same day.

Location of Maud Rise polynya 25 Sept 2017.
Location of Maud Rise polynya 25 Sept 2017.

A while back I calculated the heat loss through 2,000 km2 of open water in the Arctic as being ~600 GW. This is about 20 times as much open water…

As I said then, the heat loss is making the surface waters denser, so they sink away from the surface

More to come on this I expect.

5 Comments

Quick post on the Maud Polynya in the Weddell Sea that I wrote about last week. This is the sea ice data 17 September 2017, and the polynya is both clear and large.

The location of the polynya over Maud Rise. Sea ice data from DMSP SMMI.
The location of the polynya over Maud Rise. Sea ice data from DMSP SMMI.

An enlargement of the polynya shows that it is practically open water.

...continue reading

3 Comments

The Weddell Sea polynya is an area of open water that sometimes appears in the Weddell Sea over a relatively shallow region called Maud Rise.

The Antarctic sea ice concentration 9 September 2017. The location of the polynya is marked and the original data come from the DMSP SMMI data set at the NSIDC.
The Antarctic sea ice concentration 9 September 2017. The location of the polynya is marked and the original data come from the DMSP SMMI data set at the NSIDC.

In the latest satellite imagery from the DMSP satellite you can see the lower concentration sea ice as the darker blue colour. If you look at the MODIS imagery for the same date you can clear see black which indicates open water in the pack ice.

The MODIS imagery mosaic of Antarctica from 7 September 2017 from the MODIS sensor on the Terra satellite. The pattern in the centre of the image is because high latitudes of Antarctica are still dark at this time in winter.
The MODIS imagery mosaic of Antarctica from 7 September 2017 from the MODIS sensor on the Terra satellite. The pattern in the centre of the image is because high latitudes of Antarctica are still dark at this time in winter.

...continue reading

The sea ice in the Antarctic is at minimum extent in February and expands through to mid September.

This movie shows the Antarctic sea ice extent from 1 Feb to 25 July 2017. The data come from the DMSP SMMI sensor, and it shows the expansion of the sea ice as winter progresses.

 

For me the stand out feature is how late the sea ice expands in the Bellingshausen Sea. I think this is a feature of the super low sea ice last year, and the amount of time it took to lose the extra heat absorbed by the ocean.

The NSDIC data set shows the sea ice is lower than we've seen before by satellite.

Antarctic sea ice extent to 26 July 2017 from NSIDC.
Antarctic sea ice extent to 26 July 2017 from NSIDC.

Currently the Antarctic sea ice extent is ~450 thousand km2 below 1981-2010 median.

~7-8 weeks of sea ice expansion to go.

1 Comment

The sea ice in the Arctic is at maximum extent in February and retreats through to mid September.

This movie shows the Arctic sea ice extent from 1 Feb to 25 July 2017. The data come from the DMSP SMMI sensor, and it shows the retreat of the sea ice as summer progresses.

You can see from the NSDIC that Arctic sea ice extent is tracking close to the 2012 minimum, and about ~1.6 million km2 below 1981-2010 median.

Arctic sea ice extent to 26 July 2017 from NSIDC.
Arctic sea ice extent to 26 July 2017 from NSIDC.

To see where the sea ice "isn't" you can see the gif I made for a post last week.

The mean Arctic sea ice for the years 1989-93 on 27 July, the sea ice concentration on 27 July 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.
The mean Arctic sea ice for the years 1989-93 on 27 July, the sea ice concentration on 27 July 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.

In that post I said

Things that stand out for me are the virtually open water in the Barents and Kara Seas.

~6-8 weeks of melt to go...

Today the NASA Earth Observatory Website has published a beautiful image from 29 June 2017 of Hudson Bay in a post called Lingering Sea Ice on Hudson Bay.

Lingering Sea Ice on Hudson Bay
Lingering Sea Ice on Hudson Bay. Image NASA Earth Observatory.

To the untrained eye the sea ice in the bay looks like cloud, but if you look at the still from the movie above on the same day, the sea ice is clear.

Hudson Bay 28 June 2017
Hudson Bay 28 June 2017

The NASA blog post talks about how polar bears were hunting in this sea ice.

 

2 Comments

I thought it was time to look at the sea ice data as the summer Arctic melt proceeds.

The image below shows the mean sea ice extent 1989-93 on 22 July, the sea ice extent 22 July 2017, and the difference between the two data sets. Reds imply less sea ice than the mean 1989-93, and blues an increased sea ice extent.

The mean Arctic sea ice for the years 1989-93 on 22 July, the sea ice concentration on 22 July 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.
The mean Arctic sea ice for the years 1989-93 on 22 July, the sea ice concentration on 22 July 2017 and the difference between the two data sets. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.

As we would expect, compared with the 1989-93 data the sea ice edge is consistently further north. Things that stand out for me are the virtually open water in the Barents and Kara Seas. This region was very slow to freeze over in the autumn and winter of 2016, so I would have expected the sea ice there to be relatively thin at the end of the Arctic winter.

Also the Chukchi Sea is opening.

Overall the area of the Arctic Ocean covered with sea ice is low. Some will note it is currently above the record low in 2012, but it's only 90,000 kmabove that. To me that is not that significant.

Arctic sea ice extent to 22 July 2017 from NSIDC.
Arctic sea ice extent to 22 July 2017 from NSIDC.

What is significant is the sea ice 22 July 2017 is ~1.7 million kmbelow the median extent from 1981-2010.

I looked a couple of days ago at the sea ice in the North West Passage (19 July 2017), and it is starting to open up.

The North West Passage. Image 22 July 2017 from the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite.
The North West Passage. Image 19 July 2017 from the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite.

The yellow line traces out possible ship routes through the North West Passage and whilst there is still ~1200 km of sea ice on that route, when you compare the region to the longer term data you can see how low this is compared the historical record.

The difference in the sea ice in the NW Passage on 22 July 2017 compared with the mean for the years 1989-93 on 22 July. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.
The difference in the sea ice in the NW Passage on 22 July 2017 compared with the mean for the years 1989-93 on 22 July. Blue shades imply more sea ice and reds imply decreased sea ice compared with the mean. The original data come from the DMSP SMMI data set at the NSIDC.

It may be this year that the passage may not open at all, but taken together the two plots are a a good example of how we can expect the north west passage to become consistently open as the Arctic continues to warm.